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The present paper deals with the oscillations of elastic plates in an ideal fluid. 
The optimizing problem of determining the thickness distribution for which the 
fundamental oscillation frequency is a maximum, is formulated, Necessary con- 
ditions for the extfemum are derived. The relation between the fundamental 
frequency (a functional) and the parameters of the problem is investigated. The 
asymptotic behavior of the thickness and deflection distributions at the edgesof 
the optimal plate is studied. An analytic solution of the optimization problem 
is given for thin, three-layer panels and it is shown that in this case the condi- 
tions of optimality are not only necessary. but also sufficient. The problem was 
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solved numerically in [l] for the case of solid panels, 

1. Let us consider the problem of small oscillations of an elastic plate in an infinite 

mass of ideal fluid. We assume that the plate is hinged along a smooth contour I? in 
the plane z = 0 of the rectangular zyz-coordinate system. Let us denote by h = 

h (2, y) and u = u (z, y, t), Q = Q (5, y, t) the thickness distribution, plate deflec- 
tion function and the fluid reaction on the plate, respectively. Then the equation of 
small plate oscillations and the boundary conditions can be written in the form 

u = 0, D (Au++ = 0, (z,y)~r 

Here G denotes a region in the sy-plane bounded by the contour I?, D = D (h) is 
the bending stiffness of the plate, v is the Poisson’s ratio and p is the specific density 
of the plate material. A, n and R denote, respectively, the Laplace operator acting 

on the variables J: and y, the normal and the radius of curvature of the contour r. 

We assume that the motion of the fluid is irrotational. In this case we can describe it 

with the help of the velocity potential cp = cp (5, y, z, with satisfies the Laplace 
equation and the linearized boundary conditions 

Acp = 0, (ikjdik)G* = hdc%, (~p)~ = 0 (1.2) 

The first of the boundary conditions in (1.2) refers to the upper (plus sign) and the 
lower (minus sign) edge of the slit z = 0, (5, y) E G. This condition is obtained by 
transferring the condition of zero fluid flow across the plate surface, to the XI/-plane, 

under the assumption that the deflections u and thicknesses h are small and the motion 

of the fluid is inseparable from the motions of the plate. 
The reaction Q exerted on the plate by the fluid is equal to the pressure difference 

between the lower and upper surface of the plate, i.e. Q = p- - p+. Using the Cau- 
thy-Lagrange integral we can express the distribution of pressure p in terms of the velo- 

city potential cp- Neglecting the second order terms we obtain the expression p = 
poo - f&&p / at, where p2 is the fluid density and pa, denotes the pressure at infinity. 
In this manner we obtain the following expression for the reaction Q : 

Qzps (T-f&-) (1.3) 

The closed boundary value problem (1.1) - (1.3) defines the functions u (z, y, t) and 
cp (2, y, Z, t) completely, provided that certain initial conditions are given. 

In what follows, we shall be considering free oscillations of the system, consequently 
we shall seek a solution of the problem (1.1) - (1.3) in the form 

u = U (z, y )exp (id), cp = io@ (5, y, 2) exp (iot) 

where 61 is the free oscillations frequency. Let us write the relation between the bend- 
ing stiffness of the plate B and the distribution of thickness h in the form D (h) = 
&,, h”‘. When m = 3, the expression corresponds to the case of solid plates, and for 
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m = 1 to t&three-layer plates (here h is the thickness of the outer, reinforcing plates). 
Let us pass to the dimensionless variables and notation 

Z’ = x J 1, y’ = y / 1, z’ = z / 1, u’ = U / 1, h’ = & / T/ 

Q2 = 6.Gp1Pm+~pm-1 Pm, a f pp/ PIT” 

Here V denotes the plate volume, I is the characteristic dimension of G, a is the 

dimensionless parameter of the problem. (Below the primes are omitted). This yields 
the following boundary eigenvalue problem : 

(Wr = 0, h” (AU-Tg)rs 0 

A@=O, 

(1.5) 

(1.6) 

2, Since the problem for the potential CL, is linear in U and independent of h, the 
difference a- - @+ in the right-hand side of (I.. 4) can be written as@-- @+=&u, 
where L, is a linear operator which is positive and ~~conjugate. In fact, let Ii, and 

Us be two arbitrary functions and let Q1 and -CD., be the solutions of the boundary value 
problem (1.6) for the cases u = U1 and u = Un. Then 

(Us, LaU2) = 1s Ci1L2c12 dx dy = \I UI (CDs- - Eh+) dx dy = 

G “G 

In the last integral the integration is carried out over the upper, as well as the lower sur- 
face of the plate, and n denotes the outer normal to the plate surface. Transforming the 

integral in accordance with the Green formula, we obtain 

cs L’LUIUZ dxdy = (LzUr, U2) 

i; 

Next, we shall show that (u, La U) > 0 for all admissible U. In fact, for any admissible 
value of u we have (w, LJJ) = 1s uL2 Udx dy = s[ ‘G (Q- - @+) dx dy = 

G G” 

- (grad @)a dx dy dz > 0 

c 
where the integration in the last integral is carried out over the whole region occupied 
by the fluid. 

The positiveness and selfconjugation properties of the ope@tor A, are well known 

(see PI). 



Thus the eigenvalue problem (1.4) - (1.6) is selfcomugak and fully defined. This 
implies that the eigenvalues are real, and the Rayleigh variational principle can be used 
to find the smallest eigenvalue 

S-&s (h) = minu J (h, U) (2.Q 
J (h, U) = I, (h, U) [al, (U) + I, (h, U)l-’ 

I 1= ss 
’ UL~ uax dy, Ia = s;S UL2 udX &I, I, = ss hU2 dX dY 

G G G 

The minimum in U is calculated on the set of all twice continuously diffe~ntiable 
functions U (X, y) satisfying the first boundary condition of (1.5). The second boundary 
condition of (1.5) need not be satisfied a p r i o I i ; the function U minimizing the 
functional J will satisfy the second boundary condition of (1.5) automatically. 

3, The Rayleigh relation J (h, U) is a functional of h (2, y) and U (X, y), there- 
fore the fundamental frequency S& determined from (2. l), depends on h (x, y). I&t us 
consider the set of continuous functions h (2, y) satisfying the condition 

ss “haxay =I: 4 
G 

(3.1) 

The isoperimetric condition (3.1) expresses the fact that the volume of the plate is con- 
stant. It is made equal to unity, by a suitable choice of the dimensionless variables. 

Let us formulate the optimization problem. We require to find a unction h satisfy- 
ing condition (3.1) and maximizing the smallest eigenvalue 9, (the fundamental fre- 
quency), i.e. 

S-J**” = maxh Qto2 (h) = maxhminu 3 (h, U) (3.2) 

The problem (3.1),(3.2) has a single parameter a = pals / (PIN). When CY, = 0 , 
we have the problem of frequency optimization for a plate oscillating in vacuum. 

Let us find the necessary conditions of optimality in the problem (3. l), (3.2). Writing 
the expressions for the first variation 61 under the condition (3.1) and assuming 6J = 
0, we obtain 

mhm-l 

where ea > 0 is a constant (Lagrange mul~plier) determined in the course of solving 
the problem. 

We note that when M = 1 , the condition of optimality does not depend explicitly 
in the function h. 

Fig. 1 

4, Let us investigate the behav- 
ior of the functions h, U and dt, 
near the contour I’ for the optimal 
plate in the case of m = 3. To do 
this we introduce a local cylindrical 
q%f)-coordinate system at any point 
OF of the contour I’ I with the q- 

axis tangent to the contour I’ at the 
point & (see Fig. 1). The g-axis 
lies in the plane parpendicular to 
the q-axis, and the angle tj is 
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counted from the xy-plane in the direction of the g-axis. Then for 8 = 0 the Eq co- 
ordinates represent a Cartesian system in the xy-plane. The condition of optimality 

(3.3) and the second boundary condition (1.5) in the neighborhood of point Or with 
m = 3 and 8 = 0 , will now assume the following form: 

3ha (g)’ - QoyJ2 = c2 , h3$=0 (4.1) 

which, together with the first boundary condition of (1.5), yields 

(h&o = 0, (6W/i3&& = 0 (4.2) 

The above boundary conditions are characteristic for the problems of optimizing edge- 

hinged beams and plates. 
Using the optimality condition (4.1) and the boundary conditions for U, we can 

write Eq. (1.4) for small E in the form 

a= aw -2 

ael a42, ( ) -QOs[cu(~5$$)-‘+~(~+-@-)]= 0 (4.3) 

Taking into account the boundary condition (4.2) and the condition that the function U 
vanishes at the boundary r , we obtain the following asymptotic representation: 

U = aIE + a,E2+ . . . + EP (hl + b,E +a..) (4.4) 

The parameter p must satisfy the conditions 0 ( p, < 2, p # 1 which follow from 

(4.2) and the first boundary condition of (1.5). Let us investigate the asymptotic beha- 
vior of the function CD. The Laplace equation for @ near the point 0, can be written 

in the following asymptotic form: 

+[$(E%)+-&J+$J]=O 

We seek a solution of this equation in the form CD = g (0) EX + o (p), where x is a 

parameter to be determined and g is a function of the angle 8. Substituting this expres- 
sion into the Laplace equation and disregarding the infinitesimals of the higher order in 

E, we obtain g” + xsg = n 

We note that since the problem for CP is antisymmetric with respect to the zy-plane , 
the function Q must be odd in z and consequently the function g must satisfy the con- 

dition that g (n) = 0. 
The boundary condition for cf, readily yields the boundary condition for g 

a0 1 a@ 
-jg = E ae e=o ( 1 = p-1 (g’)eso = (4.5) 

a& + a2E2 + - . - + g’* (bo + hEI + * * -1 

We determine the parameters x and p in the usual manner, namely by inspecting suc- 
cessively various versions of the relations connecting these parameters. Without going 
into details, we formulate the final result . The relations (4.3) - (4.5) determine the 
following unique values for x and p : p = 3/2, x = 2. 

Substituting the asymptoties obtained into the condition of optimality (4. l), we obtain 
the following asymptotic expression for h: 

h =-+&... (4.6) 
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The asymptotics (4.6) and (4.4) with p = s/2 has the same form as that for the optimal 
plates oscillating in vacuum [3]. 

5. When h is fixed, the fundamental frequency Q,, depends on the parameter a. It 
can be shown that La, is a monotonously decreasing function of the parameter a. Below 

we consider the case of optimal plates. 

To each value of the parameter a there corresponds an optimal distribution of thick- 
ness h, and a certain optimal value of the fundamental frequency Q,,, which is a de- 
creasing function of a. 

In fact, let (QOaa, U, h) represent the optimal solution for some value of a and let 

(BO*” + dQ,,*8, U + 6J, h $- Bh) be the optimal solution for the value of parameter 
( a + da ). Then from the condition (3.2) follows 

~~[mhm-l[(~+~)~-z(*-v) (~~_ (gy)]- 
ha, 6hdmly = 0 

The functions h and h + 8h must satisfy the isoperimetric condition (3. l), therefore 
we have 

ss 
dhdxdy z 0 

G 

and since the functions U and h satisfy the condition of optimality (3.3) and Eq. (1.4). 
then “Sz;, 

-_--_a Z2 (W 
da 0* al2 (CI) + Is (h, LT) 

We showed before that the operator Ls is positive. This implies that the integrals Zp (u) 

and I, (h, ZZ) are positive, therefore d&2lda < 0 and the function &,*” is a strictly 
decreasing function of a. 

8, Consider the case when the bending stiffness D is linearly dependent on the con- 
trol function h . This case corresponds to a three-layer plate. By h we will understand 

the thickness of the outer load-carrying layers, Let us set h = a@. Then the boundary 

eigenvalue problem will assume the form 

L, (h, U) = h (NJ I u + J&U) 

We consider the plane problem for a long rectangular plate hinged along the long 

edges which are parallel to the y-axis. We assume that the plate thickness does not vary 
in the y-direction, i.e. h = h (ST), and we shall carry out investigations in the xz- 
plane, since derivatives with respect to y are equal zero. Here we shall assume fixed 
not the volume of the plate, but the area of transverse cross section with the plane per- 

pendicular to the y-axis. The equations describing the oscillations of the plate will be, 
in this case, $&zg) = h(f$+L.g) (6.1) 

It was shown in [l] that the expression for L, has the form 
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1 

LJJ = s K (k 4 u (t) dt, K (t, 5) = fh ‘-1 + r (t, z) 

1 1 -r (t, 2) I 
-1 

F (t, 2) = 
(1 - z) (1 + t) v2 

(1 - t) (1 + r) I 
The boundary andoptimality conditions now become 

(6.2) 

(6.3) 

Let us consider the limiting case when a --t oo which corresponds either to thin plates, 
or to a fluid of infinite density. The equation (6.1) and the optimailty condition (6.3) 
will now become 

-j$(hE) = h 5 K(t,s)U(f)dt (6.4) 
-1 

(daUldxz)2 = c2 (6.5) 

Taking into account the symmetry of the problem with respect to the point x = 0, we 
shall seek the solution in the interval [-I ,Ol after specifying the following boundary 
conditions at the point x = 0 : 

(6.6) 

This condition implies the absence of a shearing force at the center, We also note that 

the function h (x) does not vanish within the interval [-I,11 . In fact, let h (zr) = 0 
and let us choose U in the form of a piecewise linear function 

u = (1+2)(1--l), --IbZdSl 

{ (1 + a) (1 - x), Xl<X261 

The above function satisfies the boundary conditions, and the Rayleigh relation is equal 
to zero, irrespective of the choice of h ; consequently such a function h is not optimal. 

n’ 

We have already said that when D 

is linearly dependent on h, the condi- 

tion of optimality does not contain h. 
Let us solve Eq. (6.5) for U with the 

c1.5 boundary conditions (6.2). We have 

u = i/SC (x2 - 1) 

Substituting this expression into (6.4), 
we obtain 1 

Fig. 2 .&h = + \ K(t,x)(P - l)dt 

-1 

The boundary conditions of (6.2) and (6.6) are transformed into the boundary conditions 
for h , namely h (1) = dh (0) / dx = 0. The solution of the boundary value problem 
for h has the form 
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X?l 

h = + g (xc), g(x) = \ \ \ K (t, E) (ta - 1) dtd@q 

-10 -1 

Using the expression obtained for h and the isoperimetric condition, we find that 

h = [ig(Z)d.]-’ M 2.269 
0 

Figure 2 shows the optimal thickness distribution (because of symmetry,only the region 

z > 0 is shown). 
We shall now show that when D is linearly dependent on h (a + oo) , the necessary 

condition of optimality also becomes sufficient. In fact, let h* and U* be solutions 

satisfying the condition of optimality, h be an arbitrary thickness distribution and U 

be the corresponding deflection function. Then 

We shall show that Ah > 0. To do this, we take into account the condition of optimal- 

ity (3.3), the isoperimetric condition (3.1) and the properties of the functions h*, U* 

and h, U, to arrive at the following estimates: 

*A = 11 e*, u*) 11 (h, U) > ZIP*, u*j _ I1 (h. u*j = 
z-2 (u*) -Tpj-’ I1 (u*) zz (II*) 
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A system of equations of the Reissner plate bending theory is formulated in terms 
of stress functions. An estimate of the elastic energy is deduced from the varia- 
tional principle for the stress functions. By using this estimate it is proved that 


